AFFECTED ENVIRONMENT # **INTRODUCTION** This chapter provides a discussion, by resource, of the environment affected by the individual proposals under the various alternatives in this RMP. This information is summarized from the Management Situation Analysis (MSA) on file at the BLM Miles City District and South Dakota Resource Area Office. #### Climate Western South Dakota has a wide variety of climatic conditions characterized by some extreme weather variations. The Black Hills region receives around 18 to 22 inches of precipitation, while the semi-arid plains surrounding them receive around 13 to 17 inches during an average year. The majority of the precipitation, 70 to 80 percent, occurs during the growing season from April to September. In 2 years out of 10, the rainfall during the growing season could be less than 11 inches. The major source of rainfall is thunderstorms, which are occasionally accompanied by hail. The average seasonal snowfall ranges from 155 inches in the Black Hills to 21 inches in the plains. Mean annual temperature is about 45°F. Temperatures are lowest in January, with an average low of about 0°F, and the highest in July, with an average high of about 86°F. The frost-free season ranges from 114 to 160 days. Relative humidity in the afternoon averages around 50 percent. # **Topography** The Resource Area is in the Missouri River Plateau of the Great Plains physiographic province. The west-central part is in the Black Hills division. The northern part of the Resource Area is in the Cretaceous Table Lands division, and the remaining area is part of the Pierre Hills division. Outside the Black Hills uplift area are the nearly flat layers of sedimentary rock cut by streams which form a dissected landscape of plateaus, rough breaks, flat bottomed valleys, and rolling plains. Harder sandstones form benches while the softer shales form gentle slopes or badlands. The Black Hills consist of tree covered mountains that are gently sloping to steep along drainage ways. The Grand, Moreau, Cheyenne, Bad and White Rivers flow east to the Missouri River. The Belle Fourche River flows into the Cheyenne River in Meade County. The Little Missouri drainage, in the northwestern part of the state, flows north reaching the Missouri River in North Dakota. Elevations range from 1,200 feet to 7,242 feet above sea level. The highest elevation is Harney Peak in the Black Hills. The lowest elevations are along the Missouri River. # SOILS Soils in the Resource Area are derived from marine clay shale, sedimentary siltstone, sand-stone, limestone and alluvium. Soils vary considerably over short distances in depth, profile development, and physical and chemical properties; these factors influence the soils manageability. These features reflect the differences in annual precipitation (13-17 inches per year), aspect and underlying bedrock. Most of the soils are low in organic matter and fertility and high in clay and sodium content. Soils of the area (Map 3-1) are mainly located in five Major Land Resource Areas (MLRAs 58, 60, 61, 62, and 63, Map 3-2). MLRAs differ by location, topographic extent, and various soil properties such as soil depth. Following is an overview of the MLRAs and major associated soils in the area. MLRA 58, Northern Rolling High Plains includes: A. Deep, moderately well-drained and well-drained, clayey, (Absher, Daglum, Loburn, Rhodes) sodium-affected soils on nearly level to strongly sloping terraces, fans and footslopes. They have slight to moderate erosion hazards. These soils are formed in sodium-affected alluvium from local sources. B. Shallow and moderately deep, well-drained, loamy (Cabbart, Cabba, Lantry) soils and sandy (Blackhall, Twilight) soils on moderately sloping to steep footslopes, side slopes and ridges. They have moderate to severe erosion hazards. These soils are formed in soft sedimentary siltstones and sandstones. Soils of this MLRA represent about 10 percent of the planning area. MLRA 60, The Pierre Shale Plains and Badlands includes: A. Deep, well-drained clayey (Hisle, Kyle, Lohmiller, Stetter) and sandy (Glenberg) soils on nearly level floodplains and low terraces. They have moderate to high erosion hazards. These soils are formed in alluvium from local clay shale and sandstone sources. B. Deep, well-drained clayey (Absher, Arvada, Oburn, Swanboy, Twotop, Wasa, Winler) and loamy (Archin) soils on nearly level to gently sloping fans and stream terraces. They have low to moderate erosion hazards. These soils are formed in alluvium from local sources and are strongly affected by sodium. C. Shallow and moderately deep, well-drained, clayey (Midway, Epsie, Lismas, Pierre, Samsil), and loamy (Cabbart, Redig, Scroggin) soils on moderately sloping to steep dissected shale uplands. These soils have moderate to severe erosion hazards. They are formed in soft sedimentary shale, siltstone and sandstone. Soils of this MLRA represent about 80 percent of the planning area. MLRA 61, The Black Hills Footslopes Area includes: A. Deep, well-drained, clayey (Lohmiller, Stetter), loamy (St. Onge), sandy (Glenberg, Bankard) and gravelly (Winnetti) soils on nearly level floodplains and low terraces. They have slight erosion hazards. These soils are formed in alluvium from local sources. B. Deep and moderately deep, well-drained clayey (Kyle, Hisle) and loamy (Blackpipe, Manvel, Tilford) soils on gently to strongly sloping fans and footslopes. They have slight to severe erosion hazards. These soils are formed in alluvium from local sources. Hisle soils are strongly affected by sodium. C. Shallow and moderately deep, well-drained clayey (Canyon, Grummit, Hisle, Lismas, Midway, Pierre, Rekop, Samsil), loamy (Nevee, Spearfish) and gravelly (Nihill, Paunsaugunt), soils on moderately sloping to steep dissected shale and limestone uplands. They have moderate to severe erosion hazards. These soils are formed in clayey shale and local alluvium. Soils of this MLRA represent about three percent of the planning area. MLRA 62, The Black Hills A. Deep, well-drained clayey (Kyle), loamy (Altvan) and gravelly (Winetti, Nihill) soils on nearly level floodplains and low terraces. They have moderate to high erosion hazards. These soils are formed in alluvium from local sources. - B. Deep, well-drained clayey (Savo, Kyle), and loamy (Blackpipe, Keith) soils on moderate to strongly sloping fans and footslopes in the uplands. They have moderate to severe erosion hazards. These soils are formed over siltstone, local clayey alluvium and loess. - C. Shallow, well-drained loamy (Butche, Canyon, Spearfish) soils on moderately sloping to steep side slopes in the uplands. They have severe erosion hazards. These soils are formed over sandstone and siltstone. Soils of this MLRA represent about 1½ percent of the planning area. MLRA 63, Rolling Pierre Shale Plains Area includes: - A. Deep, well-drained, loamy (Ree) soils on nearly level to gently sloping terraces. Ree has a slight erosion hazard. This soil is formed in regional alluvium. - B. Deep and moderately deep, well-drained, clayey (Hurley, Swanboy) soils on gently to moderately sloping footslopes, upland valleys and terraces. They have slight to moderate erosion hazards. These soils are formed in local clay shale. - C. Shallow and moderately deep, well-drained, clayey (Chantier, Lakoma, Okaton, Opal, and Sansarc) soils on moderately sloping to steep clay shale plains. They have severe erosion hazards. These soils are formed in local clay shale. Chantier soils are sodium-affected. Soils of this MLRA represent about five percent of the planning area. Soil mapping has been completed for most of the Resource Area at the Order II level (1:24,000 scale). Soil survey orders (level of detail) vary from Order I, for surface mine plans, to Order V for broad general planning. These county soil surveys are presented on a photo mosaic base and provide a solid foundation for environmental documents such as this RMP. Soil information and interpretations are summarized in Appendices H, I and J. Care and professional expertise must be exercised in using this data for a specific site and use. #### **Erosion** Wind and water erosion is a problem which occurs naturally on many soils in the Great Plains area. The erosion problem increases when areas are further disturbed by cultivation, overuse, road and project construction. These disturbed areas are more susceptible to erosion because of the increased area of bare soil. Soils that already show symptoms of erosion are adversely impacted by any soil-disturbing activities, which do not result in an increase of vegetation. Rehabilitation of these soils is more difficult because of past losses of topsoil and nutrients. The erosion hazard rating is a measure of the susceptibility of a soil to erosion when bare of vegetation. The soils on public land in the Resource Area have generally severe erosion hazard ratings from both wind and water due to the slope of the land, the kind and amount of ground cover, salt and/or sodium content, and low organic matter content in surface layers. Approximately 28,463 acres of the Resource Area is unsuitable for livestock grazing and no forage is apportioned for these lands due to slopes steeper than 50 percent, sandstone or shale outcrops. This information is presented in Table 3-1 (Class VIII in LCC table). When plant cover is reduced by grazing or other factors, sheet, rill, gully, and wind erosion usually result. This causes a further loss of soil and vegetative productivity as well as offsite sedimentation damage. Soil displacement from trampling by livestock and wildlife is a form of erosion similar to water erosion. Like water erosion, trampling displacement is more evident as slopes increase. This form of erosion occurs most readily when the soil is very wet or very dry. Vegetative ground cover is needed to protect soils from accelerated erosion caused by overgrazing, construction, and other
surface disturbance. Runoff and soil loss can be prevented by prudent management. (See Table 3-2 for specific soil cover target values.) The most effective means to control both wind and water erosion is by maintaining a suitable, diverse vegetative ground cover and by minimizing soil disturbance. Grazing systems that incorporate deferment or rest are more effective in reducing erosion than annual season-long use. If livestock grazing were eliminated or substantially decreased, plants would initially respond with increased vigor, resulting in increased ground cover. This would reduce bare ground and erosion potential. Table 3-3 presents the average soil losses from all soils and types of management of rangeland by major land resource area. Table 3-4 shows acres within the MLRAs by condition class. TABLE 3-1 LAND CAPABILITY CLASSES FOR M AND I ALLOTMENTS | Potential
Arable
Cropland
Acres | | | | razing, Wa
and Wildlife | | | Watershed,
Wildlife and
Scenic Acres | | | |--|----|-------|--------------|----------------------------|--------|--------|--|---------|--| | County | II | III | IV | VI | VII | VIII | Unknown ¹ | Total | | | Butte | _ | 974 | 2,782 | 78,711 | 7,267 | 21,197 | 22 | 110,953 | | | Fall River | _ | 102 | 173 | 1,110 | 538 | 224 | 13 | 2,160 | | | Harding | 25 | 361 | 493 | 8,046 | 631 | 1,776 | 103 | 11,435 | | | Meade | _ | 1,595 | 2,605 | 12,667 | 7,028 | 3,649 | 66 | 27,610 | | | Pennington | _ | 217 | 193 | 1,478 | 5,238 | 856 | · · · · · · · · | 7,982 | | | Stanley | 35 | | - | 1,099 | 5,592 | 760 | 59 | 7,545 | | | Totals | 60 | 3,250 | 6,245 | 103,112 | 26,293 | 28,463 | 263 | 167,686 | | ¹ These acres include water and soil inclusions which were not given a land capability classification. Source: BLM, 1984 TABLE 3-2 SOIL COVER TARGET BY RANGE SITES (Percent Ground Cover) | | | | Major L | and Resource | Area (MLR | A) | | |--------------------|----------|-------|---------|----------------|------------------|---------------------------------------|----| | Range Sites* | | 58 | 60 | 61 | 62 | 63 | | | Subirrigated | . 1 | _ | _ | 97 | | · · · · · · · · · · · · · · · · · · · | - | | Overflow | | _ | _ | 97 | 97 | | | | Loamy Overflow | , | 95 ** | 95 | _ | _ | – . | | | Clayey Overflow | | 95 | 95 | · | _ | _ | ٠. | | Saline Lowland | 1 | 85 . | 85 | | _ , | . <u> </u> | | | Closed Depression | | 80 | 80 | - | · . — | · — | | | Loamy Terrace | | 95 | 95 | _ | | | | | Sands | | 90 | 90 | _ | _ | _ | | | Sandy | | 95 | 95 | 95 . | .— | · — | | | Silty | | 95 | 95 | 95 | 95 | 95 | | | Clayey | : | 95 | 95 | 95 | 95 | 95 | | | Thin Upland | | 75 | 75 | . 80 | 80 | , | | | Shallow | , | 83 | 83 | 83 | - 83 | | | | Shallow Clay | | 83 | 83 | _ | _ | 87 | | | Claypan | | 70 | 70 | - | | | | | Dense Clay | 1 | 80 | 80 | · · — | - , · | 80 | | | Shallow to Gravel | ; | 70 | 70 | . - | | . - | | | Shallow Dense Clay | Y | 60 | 60 | | | | | | Thin Claypan | ١. | 50 | 50 | | · — | 55 | | | Very Shallow | 1 | 50 | 50 | · — | _ `.' | _ ` | | | Saline Upland | ; | 45 | 45 | _ | * | . | | | Porous Clay | | | _ | 75 | '- | _ | | | Clay Savannah | i | _ | _ | 50 | | · | | ^{*}Significant soil/range sites. Source: SCS Range Site Technical Guides ^{**}These numbers are percent ground cover. ⁻No data entry indicates that a range site is not mapped on public lands in the MLRA. TABLE 3-3 AVERAGE RANGELAND EROSION RATES | MLRA | T/A/yr | |------|--------| | 58 | 0.5 | | 60 | 1.3 | | 61 | 2.3 | | 62 | 0.7 | | 63 | 1.7 | The allowable soil loss tolerance (T factor) used in the Universal Soil Loss Equation (USLE) is currently under review. This review may well reduce the T factor for rangeland soils. T/A/yr - Tons/Acre/Year MLRA - Major Land Resource Area Source: U.S.D.A. S.C.S. 1982 Preliminary National Resource Inventory Information Four-Winged Saltbrush TABLE 3-4 RANGELAND CONDITION (ACRES) | MLRA | Excellent | Good | Fair | Other ¹ | Total | |-------|-----------|--------|--------|--------------------|---------| | 58 | 3,844 | 8,211 | 1,716 | 3,675 | 17,446 | | 60 | 4,456 | 76,170 | 29,477 | 23,151 | 133,254 | | 61 | _ | 4,235 | 547 | 352 | 5,134 | | 62 | _ | 2,503 | | 47 | 2,550 | | 63 | _ | 8,022 | _ | 1,238 | 9,260 | | TOTAL | 8,300 | 99,141 | 31,740 | 28,463 | 167,644 | ¹ This includes acres which were not conditionable, e.g., water, barren areas and rock outcrops. MLRA — Major Land Resource Area Source: BLM, 1984 # **HYDROLOGY** # Surface Water (Quantity and Quality) Public lands in the Resource Area are drained by tributaries of the Missouri River. The major tributaries include the Grand, Moreau, Belle Fourche, Cheyenne, Bad, and Little Missouri Rivers. Runoff from the ephemeral and intermittent tributaries results from snowmelt or intense summer storms. Since many of these smaller tributaries are underlain by Pierre shale or other heavy clay soils, runoff from intense rainfall is rapid and often changes from zero to flood stage within a single day. Surface runoff is sometimes used for flood irrigation through a system of detention dams and spreader dikes. Another use is for livestock watering from small retention structures. There are no commercial or municipal uses of surface water on public lands in the Resource Area. Water quality is variable due to the highly erratic discharge. The water is of relatively poor quality for use most of the time. Total dissolved solids (TDS) range from 200 parts per million (ppm) at high flows to 4000 ppm at low flows. Sodium and sulfate concentrations in the heavy clay soils and irrigation return flows contribute most of the TDS. Major ions include calcium, magnesium, sodium and sulfate (WRD—South Dakota 1982). #### Groundwater South Dakota is underlain by consolidated to semiconsolidated sedimentary rocks of Paleozoic, Mesozoic and early Tertiary age. These rocks are overlain in western South Dakota by semiconsolidated to unconsolidated sediments of middle and late Tertiary age. Groundwater reservoirs in these rocks constitute a large and reliable source of water for municipal and industrial use but is generally too deep for stock or domestic use. Most of western South Dakota is underlain by one or more aquifers that yield small to very large supplies of water of varying quality. Shallow groundwater is absent or scarce in most of the area. Recharge to the shallow aquifers where they do occur is largely through infiltration of precipitation that falls upon the immediate area. The mechanics of recharge to the deeper aquifers are not fully understood, however, some recharge undoubtedly occurs in the Black Hills where streams cross exposed surfaces of the aquifers. Shallow groundwater can be obtained from the Fox Hills-Hell Creek and Tertiary rocks of the Fort Union formation. The only public lands overlying these aquifers are in Harding and Perkins counties. Small to moderate yields can be expected from the Fox Hills-Hell Creek at depths up to 250 feet. Water quality ranges from highly mineralized to good and is used for stock, domestic and municipal supplies. The Fort Union supplies moderate amounts to farms and ranches from depths to 420 feet. The water is saline, has a high sodium sulfate content and is barely potable. Shallow water can also be obtained from alluvial deposits located in the larger stream valleys throughout the area. Yields and water quality are highly variable and range from five to over 100 gallons per minute (GPM); however, most wells are in the 10-20 GPM range. The quality ranges from good to highly mineralized, with most wells suitable only for stock use. High concentrations of sodium and sulfate are the principal deterrents for domestic use. Water from deeper aquifers underlies most of the public land in South Dakota. However, the costs of drilling, pumping and supplying power to the pumps makes deep aquifers use as domestic and stockwater prohibitive in most of the Resource Area. Deeper aquifers will not be affected by any of the alternatives listed in Chapter 2 and will not be discussed further. #### Sedimentation Reasons for high suspended sediment concentrations and discharges are due to locally steep topography, shallow soils, and less resistant types of bedrocks. Concentrations range from 500 ppm in parts of the Black Hills to 30,000 ppm in the Bad River Basin. Most of the annual sediment discharge occurs during a few days of the year. Ninety percent or more may be discharged during short periods of rapid runoff resulting from summer thunderstorms or rapid snowmelt, although sediment concentrations during snowmelt runoff will generally be less than in an equal volume of runoff generated by thunderstorms. In general, sediment concentration and discharge will increase as streamflow increases. Nearly all the suspended-sediment load of streams in western South Dakota is silt and clay; very little sand is transported in suspension. The construction of dams, reservoirs, pits and spreader systems results in marked changes in sediment concentration and discharge. Nearly all the sediment that enters a reservoir on a major stream is trapped. Water released from these reservoirs contains very little sediment. Sediment concentrations and yields vary greatly within any given watershed. Sediment data collected from a major stream can lead to erroneous conceptions about uniform erosion sediment concentrations and yields throughout a basin. The data for such streams should be considered as a composite of data from innumerable small basins. A large percentage of the sediment load may be coming from a small part of the basin. The data is useful when determining the amount of space that should be allocated for sediment storage in reservoirs, but is not particularly useful for determining the source of sediment
within a basin. # Water Rights Recently, the plan for statewide adjudication has been delayed indefinitely by the State of South Dakota. The current practice followed by the state is the filing of a location notice for a water development. The BLM area office has been following this practice only for the past year or two. Projects of record include 314 reservoirs, five wells, five developed springs and three water-spreaders. All new water developments will be filed upon completion. ### RANGE ## Vegetation The vegetation community on public lands within the Resource Area is comprised of the following major types: wheatgrass-needlegrass, wheatgrass, wheatgrass-grama grass, wheatgrass-grama grass (badlands), sagebrush-grass, pine-savannah, Black Hills pine forest, and Sand Hills prairie. (See Map 3-3.) From these types, an apportionment of forage to livestock, wildlife and watershed is made to benefit vegetation management. The dominant grass on most of the public lands is wheatgrass. Areas within the Resource Area which have more than 10 percent canopy cover of trees are classed as grazable woodlands. Riparian zones are defined as a specialized form of wetland producing specific vegetation types. (See Figure 3-1.) Riparian zones may include wet or subirrigated areas with vegetation common to wetland, subirrigated, saline lowland, and overflow on closed depression range sites. The relative vegetation composition (by weight) of grasses, forbs, and trees and shrubs on each range site is shown in Table 3-5. Riparian zones are used disproportionately more than any other vegetation type for livestock grazing, watering, shade, travel, and wildlife habitat. Riparian woody vegetation may include silver sagebrush, snowberry, rose, willow, lead plant, skunkbrush, buffaloberry, box elder, elm, chokecherry, cottonwood, etc. Floodplains and overflow range sites are often adjacent to riparian zones and have vegetation typical of upland sites which receive additional moisture from overland flow. Riparian zones are identified by the presence of vegetation that requires large amounts of free or unbound water. From: Thomas, J.W.; Maser, C.; and Rodier, J.E. 1979. Riparian zones in managed rangelands — their importance to wildlife. *In* Forum — Grazing and Riparian/Stream Ecosystems. Ed. Oliver B. Cope, Trout Unlimited. TABLE 3-5 RIPARIAN RANGE SITE VEGETATION COMPOSITION (Percentage by Weight) | Range Site | Grasses | Forbs | Trees and Shrubs | |-------------------|---------|-------|------------------| | Wetland | 85-95 | 5-10 | 0-5 | | Subirrigated | 90-100 | 0-10 | 0-5 | | Saline Lowland | 65-95 | 5-10 | 5-25 | | Overflow | 65-95 | 0-15 | 0-15 | | Closed Depression | 90-100 | 0-10 | · — | From: USDA-SCS South Dakota Technical Guides for MLRAs 54, 58D, 60A, 61, 62 and 63. # Range Condition, Production and Trend Ecological range condition expressed as excellent, good, fair, poor or unclassified, reflects the current vegetation composition of the rangeland in relation to the potential climax plant community. The ecological range condition of the public lands is 9% excellent, 60% good, 17% fair and the remaining 14% are either not grazable or the condition is unknown. (See Table 3-6.) Those areas in less than good condition are generally the result of several factors such as livestock concentration areas, noxious weeds or prairie dogs. Such areas are not generally the result of an overapportionment of vegetation, but of localized overuse. The opportunity for improving range condition and production by grazing management is greatest on clayey and/or loamy sedimentary uplands, alluvial terraces and floodplains. Grazing systems that are designed to provide for the needs of the vegetation would generally improve range condition in a relatively short time. Range sites vary widely in production because of differences in soils. Silty and clayey are the dominant range sites and are among the more productive and responsive sites. Vegetation production on rangelands varies widely with fluctuations in precipitation. Timing of precipitation is critical. Production is lower than normal when precipitation is low, runs off or occurs during plant dormancy periods. Critical rainfall periods are in the fall before freeze-up and in the spring during early plant growth of the dominant cool season grasses. Blue Grama TABLE 3-6 ACRES OF PUBLIC LAND BY RANGE CONDITION CLASS, MANAGEMENT CATEGORY AND COUNTY | | Mgmt | | | Con | | | | |---------------------|--------------|-------------|---------|--------|----------------------|-------------------|---------| | County ³ | Cat | Excellent | Good | Fair | Unknown ¹ | None ² | Total | | Brule | C | | 505 | | | 15 | 520 | | Butte | C | 2,359 | 19,623 | 8,999 | 1,060 | 2,272 | 34,314 | | | I | • | • | 7,712 | , | 1,442 | 9,154 | | | M | 1,486 | 67,528 | 13,030 | | 19,755 | 101,799 | | Custer | \mathbf{C} | | 2,509 | 466 | 150 | 454 | 3,579 | | Fall River | \mathbf{C} | 40 | 2,609 | 2,348 | | | 4,997 | | | I | | 947 | 547 | | 147 | 1,641 | | | M | | 442 | | | 78 | 520 | | Haakon | \mathbf{C} | | 600 | | 569 | | 1,169 | | Harding | C | 10,924 | 6,886 | | 931 | 29 | 18,770 | | | M | 4,562 | 2,959 | 2,138 | | 1,776 | 11,435 | | Jackson | C | 160 | 240 | , | | · | 400 | | Lawrence | C | | | | 2,425* | | 2,425 | | Meade | C | 1,082 | 8,968 | 1,697 | 2,696 | | 14,443 | | | · I | • | 5,552 | 7,143 | , | 3,081 | 15,775 | | | M | 1,385 | 9,839 | , | | 568 | 11,792 | | Pennington | \mathbf{C} | 24 0 | 6,443 | 530 | 1,016 | 161 | 8,390 | | | I | 655 | 1,082 | 495 | , | 294 | 2,526 | | | M | 212 | 4,006 | 675 | | 562 | 5,455 | | Perkins | C | | 7,484 | 131 | | 347 | 7,962 | | Stanley | Ċ | | 8,462 | | | 58 | 8,520 | | • | M | | 6,785 | | | 760 | 7,545 | | TOTAL | | 23,105 | 163,468 | 45,911 | 8,847 | 31,799 | 273,131 | ¹Condition class is unknown on these areas. Source: BLM, 1984 Range trend is defined as the direction of change in range condition observed over time. Generally, the trend on public lands is in a stable or slightly upward direction: 73% stable, 10% improving, 2% downward and 15% either unknown or without range trend. Trend specifics are shown in Table 3-7. Methods of determining trend include phototrend plots, point transects, comparison of recurrent surveys and professional judgment. Canada thistle is a perennial weed which has created a serious problem by infesting western South Dakota ranges, including public lands. It is generally found in small isolated patches, spreads rapidly and is difficult to eradicate. The acres of occurrence are unknown on the public lands. Other noxious weeds in significant amounts are: hoary cress, leafy spurge, perennial sow thistle and Russian knapweed. Vegetation production, plant vigor and ground cover are greatly reduced on prairie dog towns. Range condition on prairie dog towns is usually poor because of the continual clipping of vegetation and the conversion of the plant community to invader and low successional plants. No endangered plant species are known to occur in South Dakota. Two threatened species (both orchids) have been found on moist meadows in eastern South Dakota. Forty-six rare plant species occur in the area (Van Bruggen 1980). #### Livestock There are 444 grazing allotments in the Resource Area. (See Appendix B.) Eighty-two percent of the allotments run cattle, 16% sheep and the remaining 2% run more than one class of stock. These allotments, which include all of the M, I and C category allotments, are authorized to graze a total of 73,778 AUMs. The M and I allotments are authorized to graze a total of 45,305 AUMs. The 444 allotments are separated into three categories: Maintain (M), Improve (I), and Custodial (C). There are 55 M, 13 I, and 376 C allotments. (See Table 3-8.) ²These acres are Land Capability Class VIII lands, and not rangeland, therefore not condition classed. ³Lyman County is not included in this table because the 80 acres of public land is unleased. ^{*}These are woodland acres and range condition ratings do not apply. TABLE 3-7 ACRES OF PUBLIC LAND BY MANAGEMENT STATUS, TREND, COUNTY | | Mgmt | | | TREND | | | | |------------|------------------|------------|---------|-----------|----------------------|-------------------|---------| | | Cat | Increasing | Stable | Declining | Unknown ¹ | None ² | Total | | Brule | C | | | | 505 | 15 | 520 | | Butte | $^{ m C}_{ m I}$ | 1,430 | 28,631 | 921 | 1,060 | 2,272 | 34,314 | | | I | 1,442 | 7,712 | | -, | , | 9,154 | | | M | 8,302 | 73,405 | | | 20,092 | 101,799 | | Custer | \mathbf{C} | 1,909 | 1,066 | | 150 | 454 | 3,579 | | Fall River | C
I | 79 | 3,000 | 1,918 | | | 4,997 | | | I | | 1,494 | • | | 147 | 1,641 | | | M | | 442 | | ` | 78 | 520 | | Haakon | \mathbf{C} | 160 | 360 | | 649 | | 1,169 | | Harding | C
M | 3,249 | 14,295 | 266 | 931 | 29 | 18,770 | | _ | | • | 9,659 | | | 1,776 | 11,435 | | Jackson | \mathbf{C} | | 400 | | | • | 400 | | Lawrence | \mathbf{C} | | | | 2,425 | | 2,425 | | Meade | C
C | 1,624 | 9,507 | 616 | 2,696 | | 14,443 | | | I | 5,541 | 7,153 | | • | 3,081 | 15,775 | | | M | • | 11,224 | | | 568 | 11,792 | | Pennington | \mathbf{C} | 798 | 6,415 | | 1,016 | 161 | 8,390 | | | I | 517 | 1,715 | | • | 294 | 2,526 | | | M | | 4,893 | | | 562 | 5,455 | | Perkins | \mathbf{C} | 108 | 5,897 | 1,610 | | 347 | 7,962 | | Stanley | C | | 8,462 | · | | 58 | 8,520 | | - | M | 2,190 | 4,595 | | | 760 | 7,545 | | TOTAL | | 25,970 | 200,324 | 5,331 | 9,432 | 32,136 | 273,131 | ¹Trend is unknown on these areas. Source: BLM, 1984 TABLE 3-8 ALLOTMENTS BY CATEGORY AND COUNTY | | C | I | M | Total | |------------|-----|------------|----|-------| | Brule | 1 | 0 | 0 | 1 | | Butte | 73 | 5 | 33 | 111 | | Custer | 13 | 0 | 0 | 13 | | Fall River | 36 | 2 | 1 | 39 | | Haakon | 14 | 0 | 0 | 14 | | Harding | 89 | 0 | 7 | 96 | | Jackson | 4 | 0 | 0 | 4 | | Lawrence | 11 | 0 | 0 | 11 | | Meade | 61 | 6 . | 8 | 75 | | Pennington | 30 | 3 | 5 | 38 | |
Perkins | 34 | 0 | 0 | 34 | | Stanley | 26 | 0 | 6 | 32 | | Area Total | 376 | 13 | 55 | 444 | ^{*}This table shows the number of allotments in each category and county. Some allotments lie in more than one county, therefore, column totals will not equal the number of allotments in each category. Source: BLM, 1984 ²These lands are Land Capability Class VIII lands, and not rangeland, therefore not classified for trend. ³Lyman County is not included in this table because the 80 acres of public land is unleased. BLM administers four AMPs. Rest rotation grazing is applied to about 28,000 acres, while about 5,700 acres are under deferred rotation. Grazing may begin as early as March and extend through December on some allotments. For most operations, the total grazing period on public and private lands is April-November, a total of 7 to 8 months. Livestock are generally fed hay and supplements on winter pastures. The overall average dependency upon public lands is less than 20 percent, although many operations depend heavily on the public lands, especially during spring and summer. The availability and quality of water are limiting factors on some allotments and may cause disruptions to grazing during unusually dry years. There are 692 range improvements of record on the public lands which have been developed for watershed and livestock management. An average of 10 range improvements have been replaced or maintained in each of the past 5 years (an average of two fence projects and eight water developments per year). Tables 3-9a and 3-9b show the type and size of projects, respectively. Range surveys and adjudications in the late 1950s and early 1960s established current livestock and wildlife apportionments. TABLE 3-9a NUMBER OF EXISTING PROJECTS BY COUNTY, TYPE AND PURPOSE | | | | | | | Coun | ty | | | | | | 1. | |----------------------|-----|-----|-----|-----|-----|------|-----|-----|------------|-----|-----|-----|-------| | Purpose and Type | 015 | 019 | 033 | 047 | 055 | 063 | 071 | 081 | 093 | 103 | 105 | 117 | Total | | Stock Management | | | | | | | | | • | | | | | | 3-wire fences | ; | 18 | | 2 | - | 18 | | 4 | 14 | 8 | 5 | 9 | 78 . | | 4-wire fences | | 74 | 2 | -3 | | 21 | | 1 | 9. | 3 | 2 | | 115 | | Woven wire fences | , | 108 | | | | 20 | | | · 4 | | . 1 | | 133 | | Total Fence Projects | | 200 | | 5 | | 59 | | 5 | 27 | 11 | 8 | 9 | 326 | | Enclosure/Exclosure | | 8 | | | | | | | 1 | | | | 9 | | Corrals | | 2 | | | | | | | 1 | | | | 3 | | Cattleguards | : | 1 | | | | | | | 3 | | | | 4 | | Passes | 1 | | | | | 1 | | | 3 | | | | 4. | | Road | i | | | | | | | 1. | | | | | . 1 | | Springs | | | | | | | | | 5 | | | | 5 | | Wells | | | | | | 1 | | | 4 | | | | 5 | | Reservoirs | | 239 | | 2 | | 26 | | • | 32 | 3 | | 12 | · 314 | | Pipelines | | | | | | 1 | | | 4 | | | | 5 | | Catchments | 1 | | | | | | | | 1 | | | | 1 | | Watershed | | | | | | | | | , | | | | | | Brush Clearing* | | 4 | | | | | • | | 1 | , | • . | | 5 | | Contour Furrowing | | 4 | | | | | | | | | | | 4 | | Retention Dams | | | | | | 1 | | | | | | | 1. | | Dikes/Diversions | , | 2 | | | | 1 | | | | | ` | | • 3 | | Drop Structures | | 1 | | | | | | | 1 | | | | 2 | | (Totals) | 0 | 461 | 2 | 7 | 0 | 90 | 0 | 6 | 83 | 14 | 8 | 21 | 692 | ^{*}These projects are generally associated with the contour furrowing as a pretreatment #### Legend: | County No. | County Name | County No. | County Name | |------------|-------------|------------|-------------| | 015 | Brule | 071 | Jackson | | 019 | Butte | 081 | Lawrence | | 033 | Custer | 093 | Meade | | 047 | Fall River | 103 | Pennington | | 055 | Haakon | 105 | Perkins | | 063 | Harding | 117 | Stanley | Source: BLM, 1984 TABLE 3-9b SIZE (LENGTH OR ACRES) OF PROJECTS BY COUNTY, TYPE AND PURPOSE | | | | | | Cor | unty | | | | | | | County | | | | | | | | | | |-------------------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|--------|--|--|--|--|--|--|--|--|--| | Purpose and Type | 015 | 019 | 033 | 047 | 055 | 063 | 071 | 081 | 093 | 103 | 105 | 117 | Total | | | | | | | | | | | Stock Management | 3-wire fence | | 21 | | 2 | | 10 | | 13 | 9 | 7 | 3 | 10 | 75 | | | | | | | | | | | 4-wire fence | | 75 | 4 | 4 | | 13 | | 1 | 21 | 1 | 1 | | 120 | | | | | | | | | | | Woven Wire | : | 140 | | | | 14 | | | 11 | | 1 | | 166 | | | | | | | | | | | TOTAL MILES | 2 | 236 | 4 | 6 | | 37 | | 14 | 41 | 8 | 5 | 10 | 361 | | | | | | | | | | | Watershed | Brush Removal* | (| 656 | | | | | | | 10 | | | | 666 | | | | | | | | | | | Contour Furrowing | , | 773 | | | | | | | | | | | 773 | | | | | | | | | | | TOTAL ACRES | 14 | 429 | | | | | | | 10 | | | | 1439 | | | | | | | | | | | Dikes/Diversions | 14 | 459 | | | | 1650 | | | | | | | 3109 | | | | | | | | | | | TOTAL FEET | 14 | 459 | | | | 1650 | | | | | | | 3109 | | | | | | | | | | ^{*}These projects are generally associated with contour furrowing as a pretreatment. Water developments are shown on Table 3-9a #### LEGEND: | County No. | County Name | County No. | County Name | |------------|-------------|------------|-------------| | 015 | Brule | 071 | Jackson | | 019 | Butte | 081 | Lawrence | | 033 | Custer | 093 | Meade | | 047 | Fall River | 103 | Pennington | | 055 | Haakon | 105 | Perkins | | 063 | Harding | 117 | Stanley | Source: BLM, 1984 ## WILDLIFE Public lands are a major source of wildlife habitat in western South Dakota. Public land, which is often in a natural or seminatural state, provides the diversity of habitat needed by wildlife for food and cover. It is the policy of the BLM (FLPMA 1976) to consider wildlife habitat in its multiple use management. Habitat management, not species or population management, is a primary responsibility. Four major habitat types which support a wide variety of wildlife species occur on public land. These habitat types include: grasslands, grassland/shrubland, coniferous forest and riparian. Grasslands are the most widespread habitat type within the Resource Area. Common plants found on grasslands include: western wheatgrass, green needlegrass, little bluestem, Kentucky bluegrass, junegrass, blue grama, sedges, yellow sweetclover and numerous other forbs. The grassland/shrubland habitat type consists of areas where shrub species occur along with grasses. In addition to the plants listed above, one or more of the following shrubs would be present: big sagebrush, silver sagebrush, greasewood or four-winged saltbush. The coniferous forest habitat type consists of areas where ponderosa pine or western juniper comprise a large portion of the canopy cover. Most of the ponderosa pine areas occur within the foothills of the Black Hills, while western juniper is found in the Belle Fourche and Cheyenne River breaks. The riparian habitat type is characterized by one or more species of hardwood trees. Commonly found trees include cottonwood, American elm, green ash, willows and bur oak. In most instances, riparian habitat types will be found in conjunction with stream or river bottoms. There is an extremely scattered land pattern of federal ownership throughout the Resource Area. This scattered land pattern makes it all but impossible to determine wildlife numbers on federal land. Little data is available from the South Dakota Department of Game, Fish and Parks for the Resource Area. Most information comes from the county conservation officers. This information is mostly in the form of educated guesses and very little information is documented. Few critical areas for wildlife have been identified on the public land. This is not to say that critical areas do not occur on the public land, but that little emphasis has been directed to locating these areas. # Threatened and Endangered Species The black-footed ferret, southern bald eagle, peregrine falcon, whooping crane and Eskimo curlew are on the Federal Endangered Species list. Prairie dog towns on the public land may provide suitable habitat for the ferret. Bald eagles migrate through the area and winter along the Belle Fourche River, Cheyenne River, Missouri River, Bad River, Redwater River, and Bear Butte Creek. Potential nest sites do occur on public land for the peregrine falcon. Whooping cranes migrate through the state and occasionally are seen on stock dams. Potential habitat for the Eskimo curlew exists throughout the prairie. Osprey and buff-breasted sandpipers may be found near any large body of water. The interior least tern may be found along any of the rivers. Like the ferret, the northern swift fox is closely associated with prairie dog towns. River otters may be associated with any of the perennial rivers and streams. There is no known resident mountain lion population in the Resource Area. However, they may be observed in the area. Potential habitat may occur in the rivers and creeks for the following species of fish: pallid sturgeon, sturgeon chub, sicklefin chub, northern redbelly dace, finescale dace, longnose sucker and plains topminnow. The finescale dace and longnose sucker could be found in the Black Hills while the others would probably be restricted to the larger rivers. The South Dakota Department of Game, Fish and Parks identified species as threatened or endangered, which includes the species on the Federal Threatened and Endangered Species list. These species are as follows: ENDANGERED Black-footed ferret Southern bald eagle Peregrine falcon Whooping crane Eskimo curlew Central mud minnow Pearl dace Banded killifish Interior least tern THREATENED Northern swift fox River otter Mountain lion Black bear Osprey Buff-breasted sandpiper Blandings turtle False map turtle Spiny softshell turtle Eastern hognose snake Brown snake The lined snake Northern red-bellied snake Pallid sturgeon Sturgeon chub Sicklefin chub Northern redbelly dace Fine scale dace Longnose sucker Trout-perch Plains topminnow # Big Game Antelope are found throughout the
Resource Area. They are normally associated with grasslands or grassland/shrublands habitat types. Forbs are very important in their diet in the early spring. Sagebrush is used year-round and its availability may be critical during severe winters. Antelope are considered to be generally nonmigratory in South Dakota, however; some seasonal movement may occur. Mule deer can be found in all habitat types in the Resource Area. They tend to prefer the grassland/shrubland, coniferous forest, and riparian habitat types. Mule deer seem to seek out the rougher, more broken land. Browse is an important part of their yearly diet. Some seasonal movement does occur in parts of the Resource Area. Whitetail deer are associated with riparian and coniferous forest habitat types. They are normally found in ponderosa pine forests and are rarely found among the western junipers. River bottoms are particularly important within the Resource Area. Migration is limited throughout most of the state. Some seasonal movement does occur in the Black Hills area. #### Game Birds Probably no species in South Dakota is more dependent upon the public land than the sage grouse. Sage grouse are limited to Harding, Butte and Fall River counties. In Butte County there are eight known active leks, six of which are located on or within one-half mile of public land. Sage grouse are considered generally nonmigratory. A two-mile radius around leks is considered critical on a year-round basis. This distance could be greater in some instances. Sagebrush is critical habitat year-round, especially in the spring as nesting cover and in the winter for food and cover. Sharptail grouse are widely distributed throughout the Resource Area and are generally found on the grasslands where brushy draws are present. Only three leks have been identified in the Resource Area. Several more may exist but have never been documented. Turkeys are associated with coniferous forest and riparian habitats. Huntable populations occur along the Cheyenne, Belle Fourche, Moreau, Little Missouri, and Missouri River bottoms, as well as throughout the Black Hills area. Waterfowl are found statewide. Production is keyed to suitable habitat around stock dams, lakes and rivers. Ducks are found on most stock dams, while geese are found on the larger reservoirs or along the rivers. One pair of swans is known to nest near a reservoir located on public land within the Resource Area. No other game birds exist in significant numbers in the Resource Area on BLM administered lands to warrant discussion. #### Other Wildlife Numerous nongame mammals, birds, and reptiles occur within the Resource Area. Mammals of importance include the furbearers (fox, coyotes, bobcat, beavers, skunk, mink, and badger), the black-tailed prairie dog and others. Also, raptors are of importance with special emphasis on golden eagles and burrowing owls. #### **Fisheries** Fisheries within the Resource Area are varied, but primarily confined to the Belle Fourche and Cheyenne rivers, Bear Butte Creek and stock dams. Fish found in these waters include rainbow and brook trout, bluegill, walleye, sauger, yellow perch, largemouth bass, smallmouth bass, catfish, and numerous nongame species. #### LANDS There is a total of 280,672 acres of public surface estate and 5,294,122 acres of subsurface mineral estate under BLM administration. Included in the federal subsurface ownership are the Black Hills National Forest, the Buffalo Gap National Grasslands, the Custer National Forest, the Fort Pierre National Grasslands, and the Grand River National Grasslands. The majority of the surface estate, 278,673 acres, are within the study area of the following 13 counties—Brule, Butte, Custer, Fall River, Haakon, Harding, Jackson, Lawrence, Lyman, Meade, Pennington, Perkins, and Stanley. Many of the 278,673 surface acres within the study area are scattered and/or isolated tracts. This land ownership pattern is a result of those remaining less desirable areas being left over from the homesteading days in the late 1800's and early 1900's. Table 3-10 shows BLM administered surface and BLM as a percent of the county. BLM surface accounts for less than two percent of all counties except Butte, in which about 10 percent of the surface is BLM-administered. The fragmented ownership pattern of public land presents numerous management problems and often restricts use by the public. Adjustment of the land ownership pattern, preferably by exchange, could increase the management efficiency of federal resources in certain situa- TABLE 3-10 COUNTY ACRES IN STUDY AREA¹ | | BLM
Administered
Surface Acres | BLM As A
Percent Of
County | |-------------|--------------------------------------|----------------------------------| | Brule | 532 | 0.10% | | Butte | 145,851 | 9.94% | | Custer | 3,648 | 0.37% | | Fall River | 7,334 | 0.66% | | Haakon | 1,400 | 0.12% | | Harding | 29,880 | 1.74% | | Jackson | 240 | 0.04% | | Lawrence | 5,423 | 1.05% | | Lyman | 80 | 0.01% 2 | | Meade | 41,864 | 1.89% | | Pennington | 17,462 | 0.97% | | Perkins | 8,135 | 0.44% | | Stanley | 16,824 | 1.73% | | GRAND TOTAL | 278,673 ³ | i | ¹Approximately 2,000 acres are outside the study area in Bon Home, Charles Mix, Clay, Hughes, Jones, Sully, Union and Yankton Counties. Source: BLM, 1984 tions and provide legal access to isolated tracts for use by the public for recreation or other purposes. During the past year, 250 acres have been offered for competitive sale and 1,000 acres of scattered parcels have been considered for exchange. Present Recreation and Public Purposes Act (R&PP) leases in the area include the muzzle-loader range, and the Veterans of Foreign Wars picnic area and rifle range. Conveyances under the R&PP would be made to qualified applicants (state, county, local governments and nonprofit organizations) on a case-by-case basis. These conveyances usually result in a more beneficial publicuse such as wildlife reserves, land for schools and colleges, parks, recreation sites, cemeteries, museums, and fairgrounds. A State of South Dakota-BLM exchange and a Forest Service-BLM exchange are in the proposal stage. Other sales, exchanges and acquisitions are being considered as a result of management direction and public demand on a case-by-case basis. Public lands within the Resource Area classified for disposal meet all the requirements of Section 203(a) and 206(a) of FLPMA. The Resource Area processes about 10 rights-of-way cases per year. Most rights-of-way applications are for new construction of rural electric and telephone lines or amendments to existing rights-of-way. Other rights-of-way requests are for roads, transmission lines, and other facilities authorized by the Mineral Leasing Act. Rights-of-way corridors across public lands have not been a major concern. Green Needlegrass ²The percentage figure for Lyman County does not include the Lower Brule Indian Reservation acreage in the calculations. ³Approximately 6,400 acres of the total are unleased public lands, agricultural leases and Recreation and Public Purposes (R&PP) leases. #### CULTURAL RESOURCES Few cultural properties have yet been recorded on BLM administered land in South Dakota. A 4,000-year-old prehistoric camp in Meade County, partially on public land, has been recorded. The significance of 23 other known sites on public land is undetermined. Cultural sites document human occupation in the area from about 10,000 years ago to present. The Early or Paleoindian period dates from about 10,000 to 6,000 years B.C. The Middle or Archaic period is thought to date from 6,000 B.C. to A.D. 400. The Late Prehistoric period began about A.D. 400 with the adoption of the bow and arrow, and continued until the acquisition of the horse and European trade goods, about A.D. 1750. Prehistoric sites are represented by rock art, bison kills, human burials, tipi rings, and other prehistoric campsites. Forest Service inventories also include rockshelters and rock art panels. The historic period, for which written records exist, is represented by forts, posts, and battlefields from the time of white/Indian conflict, and ghost towns, as well as evidence of historic mining activities and military occupation at Fort Meade. Numerous sites also exist from the settlement period when large cattle operations flourished, railroads were built, and much of the state was homesteaded. The significance of such properties is determined by the amount and integrity of the information preserved in them, and by the importance of the historic or prehistoric events which occurred there. One site with BLM involvement, Fort Meade, is presently listed on the National Register of Historic Places. The Gant Site, 39 ME9, is located within Fort Meade and is considered eligible for the Register. # **FORESTRY** There are 9,914 acres of woodland scattered throughout the Resource Area. (See Table 3-11.) Three main types exist: ponderosa pine, juniper and mixed hardwoods. This resource serves primarily as watershed protection and wildlife cover. Harvest rates average one sawlog sale per decade and 700 board feet of incidental juniper post sales annually. TABLE 3-11 SUMMARY OF BLM WOODLAND ACRES BY COUNTY (Outside of Exemption Area and Fort Meade) | County | Mixed Species (25-75%) ¹ | Mixed Species
(75+%) | Ponderosa Pine
(25-75%) | Ponderosa Pine
(75+%) | |------------|-------------------------------------|-------------------------|----------------------------|--------------------------| | Harding | 8 | 5 | 33 | 0 | | Pennington | 4,827 | 293 | 0 | 0 | | Meade | 2,518 | 8 | 0 | 0 | | Custer | 446 | 17 | 144 | 100 | | Fall River | 107 | 0 | 1,109.8 | 53.0 | | Perkins | 244 | 0 | 0 | 0 | | TOTALS | 8,151 | 323 | 1,287 | 153 | ¹Percent crown closure Source: BLM 1983 # PALEONTOLOGIC RESOURCES Legal protection of paleontologic material extends only to those fossils deemed significant (Antiquities Act of 1906, 16 USC 432, 433). Presently,
vertebrate fossils are usually the only significant, therefore regulated, fossils. Removal of significant fossils from public land is authorized by issuing permits to qualified institutions. The Morrison formation, Lakota sandstone, and Hell Creek formation are noted for the dinosaur fossils they contain. The White River group is an important source of middle Tertiary mammals. A portion of the Pierre shale is known for the *Placenticeras* ammonites and marine reptiles found there. Plant fossils are commonly found in the Lakota sandstone, Fuson shale, and the Fort Union formation (Bjork, personal communication 1983.) Localities and specimens are recorded as they are found by professional paleontologists or BLM personnel using a locality form and cataloging system. Collection by BLM personnel is limited to those instances where loss of the material is imminent, such as from earthwork activities or erosion. There are presently no active paleontology permits issued by BLM, although various institutions and groups are working in areas where there is public land. # RECREATION Located within the boundaries of the 13 counties are many areas having recreational values. They include the Black Hills National Forest, Custer National Forest, Nebraska National Forest (consists mainly of national grasslands), Badlands National Monument, Wind Cave National Park, Custer State Park, several ski areas, the historic town of Deadwood, three major rivers, and five reservoirs. These areas offer a variety of dispersed recreational opportunities including fishing, photography, boating, hiking, rock collecting, sightseeing, hunting, and off-road vehicle (ORV) use. The Bureau has two recreation sites, one near Sturgis and the other near Belle Fourche. The former involves 6,693 acres of the former Fort Meade Military Reservation and provides activities such as camping, picnicking, fishing, hunting, equestrian use, and sightseeing. It also has historical values, including reconstructed stone cavalry jumps, historic trails, and rock carvings. The BLM has completed a plan for recrea- tion management for Fort Meade. The area near Belle Fourche is the Center of the Nation Recreation Area, recognized as a geographic center of the United States, which offers excellent scenic viewing. Throughout the Resource Area, hunting and fishing are very popular types of recreation. Hunting consists primarily of big game and upland birds with limited waterfowl hunting. Most of the public land administered by the BLM is in a scattered pattern, thus, this land has a supplemental role in the overall recreational activities. #### MINERALS The public mineral estate in South Dakota totals 5,294,122 acres with a surface estate of 280,672 acres. BLM has varied responsibilities on these lands according to who controls the surface over these minerals, the specific mineral type, and the public laws governing Public Domain and Acquired Lands. Categories of minerals of potential value include fuels (coal and oil and gas), metallics, industrials and nonmetallics, structural materials, and geothermal resources. As of 1984, there were 86 producing federal oil wells and 26 producing federal gas wells in South Dakota. Cumulative state oil production as of 1984 was 12,000,301 barrels. Ninety-six percent of this production was in Harding and Butte Counties, with the remainder in Custer, Fall River, and Dewey Counties (Map 3-4a). Cumulative gas production was 9,505,554 million cubic feet (MCF). Ninety-one percent of this production was in Harding County, with the remainder in Fall River County. The lignite coal-bearing area of South Dakota is in the northwest and includes parts of Harding, Perkins, Meade, Ziebach, Dewey, and Corsen Counties. Currently, there is no active mining in the state, although there has been recent exploration activity. Estimates of potentially recoverable coal show a total of 640 million tons, 65 percent of which is in Harding County. Aluminum, iron, magnesium, and manganese occur in significant quantities in the western counties of the state (Map 3-4b). The largest deposit of manganese in the nation is in the lower part of the Missouri Valley in South Dakota. The last activity in this area was during World War II. Gold and silver have been perennially the chief income producers in South Dakota's mining industry. These minerals occur in vein, replacement, and placer deposits of the Black Hills area. Tungsten, tin, beryllium, and primary uranium have been mined and are still present in pegmatite deposits of the Black Hills. Limestone has ranked only behind gold in value of annual production. All mining activity has been in the Black Hills and is used primarily in the manufacture of Portland cement. Bentonite is common in Upper Cretaceous rocks and occurs over wide areas in the state (Map 3-4b). It is being mined in the Mowry Shale northwest of Belle Fourche. Extensive deposits of high-grade gypsum/anhydrite occur in Lawrence, Meade, Pennington, Custer, and Fall River Counties. Production is steady and geared for a small regional market. Salt beds of economic quantities are located in Harding and Butte Counties. To date, there is no development activity in South Dakota. Granite in the Black Hills has historically been quarried on a small scale for building and riprap material. Sandstone and quartzite use exist in most of the western counties. Sand and gravel is used as a construction material is available in almost all areas of the state and continues to be a steady source of income. There is no known interest in geothermal resources, although an area in Custer and Fall River Counties has been classified "prospectively valuable" by BLM (Map 3-4a). # **ECONOMICS** #### Overview The 13-county study area, as represented by distribution of employment, is similar to the state as a whole. (See Table 3-12.) The exceptions are forestry and mining employment which, for the state, are concentrated within the 13-county area, accounting for 77 and 88 percent respectively of the total employment in these industries. For the 13-county area, the rank of the basic industries (by employment) is agriculture, manufacturing, mining, and forestry. Basic industries are those for which most revenues are derived from outside the region. These industries are the major determinants of overall employment within a region. Recreation and tourism is considered a base industry. However, its direct effects contribute to the service and retail trade industries. Agriculture is a significant base industry for each of the 13 counties within the study area. It is dominant in Brule, Fall River, Haakon, Harding, Jackson, Lyman, Perkins, and Stanley counties. The mining industry is significant in Butte and Lawrence counties. There is some forestry employment throughout the western TABLE 3-12 EMPLOYMENT BY INDUSTRY | County- | Bri | ıle | Bu | tte | Cue | ter | Fall l | River | Haa | kon | Har | ding | Jack | kson | |------------------------------------|-------|-----|-------|-----|-------|-----|--------|-------|-------|-----|-----|------|-------|----------| | Industry | No. | % | No. | % | | Total Employment | 2,490 | 100 | 3,528 | 100 | 2,575 | 100 | 3,356 | 100 | 1,205 | 100 | 748 | 100 | 1,117 | 100 | | Agriculture | 670 | 27 | 772 | 22 | 237 | 9 | 367 | 11 | 406 | 34 | 401 | 54 | 344 | 31 | | Forestry & Fish | 18 | 1 | 0 | _ | 149 | 6 | 16 | - | _ | _ | 12 | 2 | _ | _ | | Mining | 1 | | 359 | 10 | 121 | 5 | 140 | 4 | 13 | 1 | 11 | 1 | _ | _ | | Construction | 114 | 5 | 240 | 7 | 192 | 7 | 161 | 5 | 49 | 4 | 35 | 5 | 73 | 6 | | Manufacturing | 53 | 2 | 64 | 2 | 277 | 11 | 114 | 3 | 115 | 10 | 7 | 1 | 40 | 3 | | Transportation | 109 | 4 | 236 | 7 | 187 | 7 | 497 | 15 | 45 | 4 | 31 | 4 | 45 | 4 | | Wholesale Trade | 129 | 5 | 94 | 3 | 48 | 2 | 46 | 1 | 77 | 6 | 11 | 1 | 10 | 1 | | Retail Trade | 538 | 22 | 671 | 19 | 314 | 12 | 526 | 16 | 168 | 14 | 72 | 10 | 127 | 11 | | Finance, Insurance,
Real Estate | 94 | 4 | 153 | 4 | 76 | 3 | 141 | 4 | 57 | 5 | 21 | 3 | 22 | 2 | | Services | 672 | 27 | 781 | 22 | 805 | 31 | 1,180 | 35 | 227 | 19 | 102 | 14 | 353 | 32 | | Public Administration | 92 | 4 | 158 | 4 | 169 | 7 | 168 | 5 | 48 | 4 | 45 | 6 | 103 | 9 | | County- | Law | Lawrence | | Lyman | | ade | Penni | ngton | Perl | cins | Star | ıley | Sout
Dako | | |------------------------------------|-------|----------|-------|-------|-------|-----|--------|----------|-------|------|-------|------|--------------|-----| | Industry | No. | % | No. | · % | No. | % | | Total Employment | 7,757 | 100 | 1,426 | 100 | 7,152 | 100 | 29,048 | 100 | 2,291 | 100 | 1,221 | 100 | 296,679 | 100 | | Agriculture | 283 | 4 | 480 | 34 | 904 | 13 | 832 | 3 | 913 | 40 | 244 | 20 | 47,762 | 16 | | Forestry & Fish | 85 | 1 | _ | _ | _ | _ | 67 | <u>.</u> | 7 | ٠ | 2 | _ | 465 | _ | | Mining | 1,352 | 17 | 3 | _ | 216 | 3 | 192 | 1 | 56 | 2 | _ | _ | 2,791 | 1 | | Construction | 514 | 7 | 109 | 8 | 605 | 8 | 2,371 | 8 | 130 | 6 | 142 | 12 | 17,464 | 6 | | Manufacturing | 518 | 7 | 10 | _ | 685 | 10 | 3,003 | 10 | 83 | 4 | 22 | 2 | 28,555 | 10 | | Transportation | 370 | 5 | 79 | 6 | 352 | 5 | 2,228 | 8 | 155 | 7 | 79 | 6 | 18,005 | 6 | | Wholesale Trade | 181 | 2 | 44 | 3 | 264 | 4 | 1,283 | 4 | 93 | 4 | 28 | 2 | 13,842 | 5 | | Retail Trade | 1,503 | 19 | 191 | 13 | 1,263 | 18 | 6,229 | 21 | 343 | 15 | 209 | 17 | 51,384 | 17 | | Finance, Insurance,
Real Estate | 303 | 4 | 43 | 3 | 232 | 3 | 1,810 | 6 | 69 | 3 | 40 | 34 | 13,856 | 5 | | Services | 2,339 | 30 | 283 | 20 | 2,291 | 32 | 9,105 | 31 | 381 | 17 | 296 | 24 | 85,476 | 28 | | Public Administration | 309 | 4 | 184 | 13 | 340 | 5 | 1,928 | 7 | 61 | 3 | 159 | 13 | 17,049 | 6 | Source: U.S. Department of Commerce PC 80-C43 Tables 69 and 178, 1983 counties, but it provides a major source of employment only in Custer County. Tourism and recreation are significant in Custer, Fall River, Lawrence, and Pennington counties. This is due to the tourism attraction
of the Black Hills area. Pennington County generates approximately half (45%) of the employment in the 13-county area. Rapid City, the largest city in the area, serves as the major trade center for the western portion of the region. The major use of surface public lands is grazing. Due to the small percentage of public land in each county, Bureau actions generally do not have significant impacts on the economic structure of the counties (See Table 3-10.) # Agriculture In the 13-county area, there are approximately 16.5 million acres of land. (See Table 3-13.) In 1982, approximately 5,200 farms/ranches utilized 83.5% of these lands. Cropland for production of corn, wheat and hay accounted for approximately 20% of the agricultural lands. Grazing land, which includes public grazing land, totalled approximately 77% of the agricultural lands. BLM-administered lands total approximately 279.5 thousand acres and support approximately 73,778 AUMs. The total market value from all agricultural production was approximately 302.6 million dollars in 1982 in the 13-county area (Department of Commerce, Bureau of Census). TABLE 3-13 AGRICULTURAL ACREAGES AND MARKET VALUE OF PRODUCTION (1982) | Counties | Land Area | Farm Acres | No. of Farms | Market Value of
Production | |------------|------------|------------|--------------|-------------------------------| | Brule | 523,520 | 447,940 | 441 | \$23,264,000 | | Butte | 1,440,000 | 1,120,970 | 494 | 26,691,000 | | Custer | 996,480 | 418.046 | 302 | 7,885,000 | | Fall River | 1,115,520 | 1,001,854 | 336 | 40,354,000 | | Haakon | 1,162,240 | 1,208,121 | 322 | 25,364,000 | | Harding | 1,716,480 | 1,584,596 | 274 | 16,235,000 | | Jackson | 1,259,726 | 1,249,726 | 282 | 16,637,000 | | Lawrence | 512,000 | 196,321 | 245 | 10,643,000 | | Lyman | 1,077,120 | 907.934 | 422 | 28,690,000 | | Meade | 2,217,600 | 2,056,225 | 773 | 33,761,000 | | Pennington | 1,778,560 | 1,076,059 | 577 | 22,725,000 | | Perkins | 1,830,400 | 1,670,908 | 595 | 27,858,000 | | Stanley | 904,960 | 860,755 | 169 | 17,074,000 | | TOTALS | 16,534,606 | 13,799,455 | 5,232 | \$296,445,000 | Source: U.S. Department of Commerce, Bureau of Census, 1982 Census of Agriculture, February 1984. In 1982, the 13-county area had a cattle and calf inventory of approximately 800,000. This was 20.3% of the total state inventory. Sales of cattle and calves totalled approximately 469 thousand head and this was approximately 19.4% of the state's total sales. Assuming BLM-administered lands are used on the average of 8 months a year, the 73,778 AUMs produce 9,222 animal units, which is 2.1% of the cattle and calf sales for the 13-county area. Assuming \$400 of gross revenue per animal unit, production on public lands contributes \$3,688,800 of gross revenue annually to the livestock industry. Approximately \$10/AUM of ranch income, a net term, is associated with the BLM AUMs. That is, approximately three quarter million dollars of ranch income is associated with BLM AUMs. Public land is an economic factor to the 444 ranches that have allotments on BLM-administered lands and enables many of them to remain in business. The average ranch is 9.9% dependent upon public land to support the ranch operations. (See Table 3-14.) Generally, the smaller ranches are more dependent on BLM lands than are the larger ones. #### Permit Value The BLM does not recognize the right of the operator to treat his BLM grazing preference as real property; however, these preferenced AUMs do have value. The value of the preference varies considerably. If the preference is for small, isolated, landlocked tracts of public lands, the value is minor. Where public lands provide a large block of grazing, the preference value can be substantial. Preference value is difficult to estimate because it usually is not separated from the total value of the ranch. Ranches are usually valued and sold on a costunit basis. It is estimated that an average value for the BLM grazing preference is approximately \$100 per AUM or \$1,200 per animal unit. TABLE 3-14 ESTIMATED RANCH DEPENDENCY ON BLM LAND | Ranch Size | Ranches
in | Numbe | er of Ranche
of Depe | | ategory | Average
Percent | |-----------------------------|---------------|----------|-------------------------|--------|---------|--------------------| | Category | Category | 0-15 | 16-30 | 31-45 | 45-100 | Dependency | | Small
0-3,500 acres | 183 | 118(64%) | 25(14%) | 5(3%) | 35(19%) | 11.6% | | Medium
3,501-9,000 acres | 169 | 146(86%) | 19(86%) | 3(2%) | 1(1%) | 8.7% | | Large
9,001-14,000 acres | 47 | 39(83%) | 5(11%) | 2(4%) | 1(2%) | 9.0% | | Very Large
14,001 and up | 45 | 33(73%) | 9(20%) | 0(0%) | 3(7%) | 10.2% | | | 444 | 336(76%) | 58(13%) | 10(2%) | 40(9%) | 9.9% | Source: BLM 1984 #### SOCIAL CONDITIONS # **Population Trends** Since 1870 South Dakota has had sizeable population increases every decade until the drought and depression years of the 1930's. The most rapid growth occurred during the 1870 to 1880 settlement years of Dakota Territory. (See Table 3-15.) Drought in the 1880's discouraged settlement and encouraged many to move after 1890. There was a new surge of growth after 1900. This growth was generated by the opening of western South Dakota to homesteaders, the coming of railroads, and the establishment of trade centers. These factors combined gave South Dakota its largest population ever in 1930, 692,849 persons. TABLE 3-15 TOTAL POPULATION OF SOUTH DAKOTA, URBAN AND RURAL BY DECADE, 1880 — 1980 | | Populati | on of South | Dakota | |------|-----------|-------------|---------| | | The State | Urban | Rural | | 1880 | 98,268 | 7,208 | 91,060 | | 1890 | 348,600 | 28,555 | 320,045 | | 1900 | 401,570 | 40,936 | 360,634 | | 1910 | 583,888 | 76,469 | 507,419 | | 1920 | 636,547 | 101,872 | 534,675 | | 1930 | 692,849 | 130,907 | 561,942 | | 1940 | 642,961 | 158,087 | 484,874 | | 1950 | 652,740 | 216,710 | 436,030 | | 1960 | 680,514 | 267,180 | 413,334 | | 1970 | 666,257 | 296,628 | 369,629 | | 1980 | 690,768 | 320,777 | 369,991 | Source: U.S. Department of Commerce, Bureau of Census, 1980 Census of Population, Number of Inhabitants, South Dakota During the period of 1930 to 1940, South Dakota's population decreased by almost 50,000 persons. Drought and unemployment forced many to seek employment elsewhere. From 1940 to 1950, South Dakota experienced small increases in population. Recent trends (1970 to 1980) show eight out of 13 counties increasing in population. Population decreases are shown in five entirely rural counties, Brule, Haakon, Harding, Lyman and Perkins (Tables 3-16 and 3-17). Distributed age classes within the 13 counties are not significantly different from the statewide percentages. Over half of the population is in the working age group, 18 to 64 years. Less than one third of the population is under 17 years and around one sixth is 65 years and older. Historically, the industrial base of the Resource Area has been dominated by agriculture, which has largely determined the shape of both the economic and social structure of the area. The prevailing lifestyle is strongly tied to the land and to the sense of independence, self-reliance and stability which is characteristic of rural areas. In 1930, the state's largest population was rural, accounting for 81 percent of the total. (See Table 3-18.) This figure continued to decline with the rural percentage being 53.6 percent statewide in 1980. Some counties show the entire population as being rural, outside communities of 2,500 in population. Pennington County shows the smallest percentage being rural at 23.2 percent. Pennington County includes Rapid City, the major population center in the Resource Area. TABLE 3-16 POPULATION CHARACTERISTICS AND SOCIAL WELL-BEING BY COUNTY | - | | Brule | Butte | Custer | Fall
River | Haakon | Harding | Jackson | |---|----------|-------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------| | Population 1970 | 1) | 5,870 | 7,825 | 4,698 | 7,505 | 2,802 | 1,855 | 2,920 A | | Population 1980 | 2) | 5,245 | 8,372 | 6,000 | 8,439 | 2,794 | 1,700 | 3,437 | | Percent change
(1970—1980) | 2) | -10.6% | 7.0% | 27.7% | 12.4% | -0.3% | -8.4% | +17.7% | | Density 1980
(per square mile) | 1) | 6.4 | 3.7 | 3.8 | 4.9 | 1.5 | 0.6 | 1.8 | | Percent population
by age (1980)
— 17 yrs or less
— 18 to 64 yrs
— 65 yrs or more | 2)
1) | 31.4%
54.0%
14.5% | 30.3%
55.5%
14.2% | 29.7%
58.5% | 27.5%
55.3% | 34.3%
52.8% | 30.5%
56.4% | 39.2%
50.2% | | Percent nonwhite population (1980) | 3) | 2.4% | 2.5% | 11.8%
3.3% | 17.2%
6.2% | 12.8%
1.5% | 13.1%
1.3% | 10.6%
43.7% | | Unemployment rate
(July 1984) | 4) | 3.8 | 3.1 | 2.2 | 2.9 | 1.4 | 1.5 | 2.7 | | Median Income
of families (1979) | 5) | 13,037 | 15,345 | 16,798 | 14,274 | 14,131 | 14,301 | 13,783 | | Percent families below
poverty level (1979) | 5) | 21.4 | 12.7 | 10.2 | 12.5 | 18.4 | 19.1 | 27.4 | | : | I | awrence | Lyman | Meade | Pennington | Perkins | Stanley | South
Dakota | |---|----|-------------------------|-------------------------|------------------------|------------------------|-------------------------|------------------------|-------------------------| | Population 1970 | 1) | 17,453 | 4,060 | 17,020 | 59,349 | 4,769 | 2,457 | 666,257 | | Population 1980 | 2) | 18,339 | 3,864 | 20,717 | 70,361 | 4,700 | 2,533 | 690,768 | | Percent change
(1970—1980) | 2) | 5.1% | -4.8% | 21.7% | 18.6% | -1.4% | 3.1% | 3.7% | | Density 1980
(per square mile) | 1) | 22.9 | 2.3 | 6.0 | 25.3 | 1.6 | 1.8 | 9.1 | | Percent population
by age (1980)
— 17 yrs or less
— 18 to 64 yrs
— 65 yrs or more | 2) |
27.3%
59.6%
13.1% | 35.4%
52.5%
12.1% | 33.3%
58.5%
8.2% | 30.0%
61.6%
8.4% | 28.2%
56.7%
15.1% | 34.1%
56.1%
9.9% | 29.8%
57.1%
13.2% | | Percent nonwhite population (1980) | 3) | 2.5% | 23.4% | 5.5% | 7.9% | 1.2% | 3.9% | 7.4% | | Unemployment rate
(July 1984) | 4) | 3.8 | 4.9 | 3.0 | 3.6 | 2.0 | 3.5 | 3.8 | | Median Income
of families (1979) | 5) | 16,597 | 12,863 | 16,624 | 17,364 | 15,049 | 16,996 | 13,830 | | Percent families below
poverty level (1979) | 5) | 10.3 | 24.8 | 8.0 | 9.5 | 15.9 | 11.2 | 13.1 | A. The population figures for Jackson County in 1970 did not include Washabaugh County. However, the 1980 census reflects the combined population of both counties because they consolidated. To obtain a realistic percentage of change the 1970 population of Jackson County has the 1970 population of Washabaugh County added to it. 1) U.S. Department of Commerce, Bureau of Census, 1980 Census of the Population, A Number of Inhabitants, South Dakota. ²⁾ U.S. Department of Commerce, Bureau of Census, 1982, 1980 Census of the Population, General Population Characteristics, South Dakota. $^{3) \,} U.S. \, Department \, of \, Commerce, \, Bureau \, of \, Census, \, 1982, \, 1980 \, Census \, of \, Housing, \, General \, Housing \, Characteristics, \, South \, Dakota.$ ⁴⁾ South Dakota, Department of Labor, 1984, South Dakota Labor Bulletin, July. ⁵⁾ South Dakota, Department of Health, 1982, South Dakota Vital Statistics and Health Statistics. ⁶⁾ U.S. Department of Commerce, Bureau of Census, 1982, 1980 Census of the Population, General Social and Economic Characteristics, South Dakota. TABLE 3-17 CHARACTERISTICS OF RURAL AND FARM POPULATION | | | Brule | Butte | Custer | Fall
River | Haakon | Harding | Jackson | |--|---------|-------|--------|--------|---------------|--------|---------|---------| | Percent Rural
(population below
2,500) (1980) | 1) | 100% | 44.0% | 100% | 43.5% | 100% | 100% | 100% | | Percent Farm (based on
total population)
(1980) | 2) | 26.4% | 13.2% | 10.6% | 5.6% | 31.6% | 51.0% | 26.6% | | Percent Change in Total
Acreages for Farms and
Ranches (1974-1978) | l
3) | -9.7% | -10.7% | 10.2% | -7.6% | 5.8% | 4.4% | -3.6% | | Percent Change in
Number of Farms and
Ranches (1974-1978) | 3) | -5.6% | -0.4% | 2.2% | -5.0% | 2.3% | -11,5% | -9.4% | | Percent Change in Aver-
rage Size of Farms and
Ranches (1974-1978) | 3) | -4.3% | -10.3% | 7.8% | -2.8% | 3.5% | 17.9% | 6.4% | | | Lawrence | Lyman | Meade | Pennington | Perkins | Stanley | South
Dakota | |--|-------------|-------|-------|------------|---------|---------|-----------------| | Percent Rural
(population below
2,500) (1980) | 47.8%
1) | 100% | 52.0% | 23.2% | 100% | 100% | 50.6% | | Percent Farm (based on
total population)
(1980) | 2.6% | 25.6% | 8.4% | 1.7% | 35.6% | 20.8% | 16.9% | | Percent Change in Total
Acreages for Farms and
Ranches (1974-1978) | 3.0% | -3.3% | 7.2% | -16.9% | -6.6% | -9.0% | -3.1% | | Percent Change in
Number of Farms and
Ranches (1974-1978) | 3.2% | 11.2% | -9.9% | -5.2% | -9.7% | -5.3% | -7.4% | | Percent Change in Aver-
rage Size of Farms and
Ranches (1974-1978) | -0.2%
3) | 8.9% | 3.0% | -12.4% | 3.4% | -3.8% | 4.6% | $^{1)\,}U.S.\,Department\,of\,Commerce,\,Bureau\,of\,Census,\,1980\,Census\,of\,Population,\,Number\,of\,Inhabitants,\,South\,Dakota$ TABLE 3-18 SOUTH DAKOTA'S URBAN AND RURAL POPULATION AS A PERCENT OF STATE POPULATION, 1880 - 1980 | | · · · | Year | | | | | | | | | | | | | |-------|-------|------|------|------|------|------|------|------|------|------|------|--|--|--| | | 1800 | 1890 | 1900 | 1910 | 1920 | 1930 | 1940 | 1950 | 1960 | 1970 | 1980 | | | | | Rural | 92.7 | 91.8 | 89.8 | 86.9 | 84.0 | 81.1 | 75.4 | 66.8 | 60.9 | 55.5 | 53.6 | | | | | Urban | 7.3 | 8.2 | 10.2 | 13.1 | 16.0 | 18.9 | 24.6 | 33.2 | 39.1 | 44.5 | 46.4 | | | | Source: U.S. Department of Commerce, Bureau of Census, 1980 Census of Population, Number of Inhabitants, South Dakota. ²⁾ U.S. Department of Commerce, Bureau of Census, 1980 Census of Population and Housing, Summary Tape File 3A, South Dakota. ³⁾ U.S. Department of Commerce, Bureau of Census, 1978 Census of Agriculture, State and County Data, South Dakota.